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A study is made of the influence of the accommodation coefficients of tangential momentum of molecules on
the lower and upper plates on the behavior of the gas between moving plates with arbitrary mirror-diffuse
boundary conditions. The solution is constructed in a wide range of Knudsen numbers. Expressions for the
mass and heat fluxes, the friction force, and the mass velocity are obtained.

Introduction. In describing the motion of a gas in channels [1–6], one considers purely diffuse boundary con-
ditions, as a rule. It turns out that the efficient technique of analytical solution that has been developed for half-spatial
problems [7] cannot be used directly in this case. At the same time, the influence of the properties of the surface of
the channel behavior of the gas is of great interest. An attempt at obtaining the analytical solution for nearly mirror
boundary conditions has been made in [6]. An extensive amount of literature (see, e.g., [8–10] and the references
therein) is devoted to the gas motion in a channel at present.

In this work, we have obtained the solution of the Couette problem with arbitrary mirror-diffuse conditions on
channel walls moving in opposite directions with the same velocities.

Formulation of the Problem. Let there be a plane channel (x < d) whose walls move in their planes in the
opposite directions with velocities U and −U. We introduce a Cartesian coordinate system with its center at the center
of the channel; the x axis is perpendicular to the channel walls, and the z axis coincides with the direction of their
motion. We will assume that the motion is stationary in character. We consider the case where the velocity of motion
of the channel walls is much lower than the velocity of sound in the gas. Therefore, the problem can be linearized.
The velocity-distribution function f of the gas molecules will be sought in the form f = f0(1 + h). We use a linearized
BGK (Bhatnagar, Gross, and Krook) equation in dimensionless variables:

Cx 
∂h

∂x
 + h (x, C) = 2CzUz (x) ,   Uz (x) = π−3 ⁄ 2 ∫ exp (− C ′

 2

) Cz
 ′h (x, C ′) d3

C ′ . (1)

We consider mirror-diffuse boundary conditions on the channel surface with tangential-momentum accommo-
dation coefficients (coefficients of specular reflection) q1 and q2 (0 ≤ qj ≤ 1 and j = 1, 2):

h (− d, C) = (1 − q1) h (− d, C + 2n1C) − 2UCzq1 ,   Cx > 0 ;

h (d, C) = (1 − q1) h (d, C + 2n2C) + 2UCzq1 ,   Cx < 0 .
(2)

It follows from Eq. (1) and boundary conditions (2) that the function h can be sought as h = Czψ(x, µ), µ = Cx. Prob-
lem (1) and (2) can be transformed as follows:

µ 
∂ψ
∂x

 + ψ (x, µ) = 
1
√π

 ∫ 
−∞

∞

exp (− µ ′
 2
) ψ (x, µ ′) dµ ′ , (3)

ψ (− d, µ) = (1 − q1) ψ (− d, − µ) − 2Uq1 ,   µ > 0 ;   ψ (d, µ) = (1 − q2) ψ (d, − µ) + 2Uq2 ,   µ < 0 . (4)
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We will follow the method presented in [10]. Representing the function ψ as the sum

ψ = ψ0 (x, µ) + ψc (x, µ) , (5)

where the function ψ0(x, µ) = a0 + a1(x − µ) is the solution of Eq. (3), we rewrite boundary conditions (4) in the form

ψc (− d, µ) = (1 − q1) ψc (− d, − µ) + a1 (2 − q1) µ − q1 (a0 − a1d + 2U) ,   µ > 0 ;

ψc (d, µ) = (1 − q2) ψc (d, − µ) + a1 (2 − q2) µ − q2 (a0 + a1d − 2U) ,   µ < 0.
(6)

or, introducing the notation

ψc (− d, µ) = C1 (µ) B C1 ,   µ < 0 ;   ψc (d, µ) = C2 (µ) B C2 ,   µ > 0 ,

we obtain that boundary conditions (6) have been determined on the entire number axis

ψc (% d, µ) = M
%

 (µ) ,   − ∞ < µ < ∞ . (7)

Here we have

M− (µ) = H+ (µ) ϕ1 (µ) + H− (− µ) C1 ,   M+ (µ) = H+ (− µ) ϕ2 (µ) + H+ (µ) C2 ; (8)

ϕ1 (µ) = (1 − q1) C1 − q1 (a0 − a1d + 2U) + a1 (2 − q1) µ ;

ϕ2 (µ) = (1 − q2) C2 − q2 (a0 + a1d − 2U) + a1 (2 − q2) µ .

Next we will solve Eq. (3) with boundary conditions (7).
Solution of the Boundary-Value Problem. Separation of variables

ψη (x, µ) = exp 

− 

x
η



 Φ (η, µ) ,   η 2 C

immediately reduces Eq. (3) to the characteristic equation:

(η − µ) Φ (η, µ) = 
η
√π

 ,   ∫ 
−∞

∞

exp (− µ2) Φ (η, µ) dµ = 1 .

When −∞ < η < ∞ the solution of this equation will be taken in the space of generalized functions [11]:

Φ (η, µ) = 
1
√π

 ηP 
1

η − µ
 + exp (η2) λ (η − µ) ,   λ (z) = 1 + 

z
√π

 ∫ 
−∞

∞
exp (− v

2) dv

v − z
 .

We compose the general solution of Eq. (3) from the eigenfunctions Φ of the characteristic equation

ψc (x, µ) = ∫ 
−∞

∞

exp 

− 

x
η



 Φ (η, µ) a (η) dη , (9)

where a(η) is the unknown function called the continuous-spectrum coefficient.
Substituting the expansion (9) into boundary conditions (7), we obtain two singular integral equations [12]

with a Cauchy kernel on the entire number axis:
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1
√π

 ∫ 
−∞

∞

exp 

% 

d
η



 
ηa (η) dη
η − µ

 + exp 

µ2

 % 
d
µ



 λ (µ) a (µ) = M

%
 (µ) . (10)

We introduce two auxiliary functions

N (z, % d) = 
1
√π

 ∫ 
−∞

∞

exp 

& 

d
η



 
ηa (η) dη
η − µ

 , (11)

for which the Sohotskii formulas

N
+
 (µ, & d) − N

−
 (µ, & d) = 2 √π  iµ exp 


% 

d
µ



 a (µ) (12)

hold on the entire real axis. Using the boundary values of the auxiliary functions (11) and the dispersion function λ(z),
we reduce Eqs. (10) to the boundary-value problems of determination of the analytical function from its jump on the
real axis:

N
+
 (µ, & d) λ+ (µ) − N

−
 (µ, & d) λ− (µ) = 2 √π  iµ exp (− µ2) M

&
 (µ) .

The solutions of these problems are expressed by integrals of the Cauchy type:

N (z, & d) = 
F (z, & d)
λ (z)

 ,   F (z, & d) = 
1
√π

 ∫ 
−∞

∞
τ exp (− τ2)

τ − z
 M
&

 (τ) dτ . (13)

It is necessary that the expansion coefficients of these functions in the vicinity of the point z = ∞ for zk (k = 0, 1)
are equal to zero. Then, taking the functions of (13) as the auxiliary functions (11), we obtain the following system
of equations:

 ∫ 
−∞

∞

exp (− t
2) tk [C1H+ (− t) + ϕ1 (t) H+ (t)] dt = 0 ,

∫ 
−∞

∞

exp (− t
2) tk [C2H+ (t) + ϕ2 (t) H+ (− t)] dt = 0 ,   k = 1, 2 .

Substitution of the function of (8) into these equations yields a system of linear equations from which we find

a0 = − 2U 
1 + α0q1q2

Q (q1, q2)
 (q1 − q2) ,   a1 = 

4Uq1q2

√π  Q (q1, q2)
 ,   α0 = 

4 − π
4π

 = 0.068310 , (14)

C1 = − 4α0U 
(2 − q1) q1q2

Q (q1, q2)
 ,   C2 = 4α0U 

(2 − q2) q1q2

Q (q1, q2)
 ,   α0 = 

4 − π
4π

 = 0.068310 , (15)

Q (q1, q2) = 


2d
√π

 − 1 + 4α0



 q1q2 + (1 − α0q1q2) (q1 + q2) .
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Using equalities (14) and (15) we derive the formula for computation of the coefficient a(η) of the expansion (9).
Substituting the solutions (13) into the corresponding Sohotskii formulas (12), we obtain

2 √π  iη exp 

% 

d

η



 a (η) = 

F
+
 (η, & d)

λ+ (η)
 − 

F
−
 (η, & d)

λ− (η)
 . (16)

Here

F
%

 (η, − d) = F1 (η) % i √π  η exp (− η2) [H+ (η) ϕ1 (η) + H+ (− η) C1] ; (17)

F
%

 (η, d) = F2 (η) % i √π  η exp (− η2) [H+ (− η) ϕ2 (η) + H+ (η) C2] ; (18)

F1 (η) = 
1

√π
 ∫ 
0

∞

t exp (− t
2) 




C1

t + η
 + 
ϕ1 (η)
t − η




 dt ; (19)

F2 (η) = 
1

√π
 ∫ 
0

∞

t exp (− t
2) 




C2

t − η
 + 
ϕ2 (− η)

t + η



 dt . (20)

Substituting first equalities (17) and then (18) into relations (16), we find the formulas for computation of the
coefficient a(η):

η exp 


d
η



 a (η) = γ (η) 


λ (η) [H+ (η) ϕ1 (η) + H+ (− η) C1] − F1 (η)


 , (21)

η exp 

− 

d
η



 a (η) = γ (η) 


λ (η) [H+ (− η) ϕ2 (η) + H+ (η) C2] − F2 (η)


 , (22)

where

γ (η) = 
η exp (− η2)

λ+ (η) λ− (η)
 .

Computing integrals of the Cauchy type (19) and (20), we have

F1 (η) = C1t1 (− η) + a1 (2 − q1) t2 (η) + [(1 − q1) C1 − q1 (a0 − a1d + 2U)] t1 (η) ,

F2 (η) = C2t1 (η) − a1 (2 − q2) t2 (− η) + [(1 − q2) C2 − q2 (a0 + a1d − 2U)] t1 (− η) .

Here we obtain

tk (η) = 
1
√π

 ∫ 
0

∞
τk

 exp (−τ2)
τ − η

 dτ ,   k = 1, 2 ;   t2 (z) = 
1

2 √π
 + zt1 (z) .

Using the last equalities, we transform formulas (17) and (18). For this purpose, we note that

λ (η) [H+ (η) ϕ1 (η) + H+ (− η) C1] − F1 (η) =
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= q1 sign (η) (− a0 − C1 + a1d − 2U) t1 (− η) − a1 (2 − q1) t2 (− η) ,

λ (η) [H+ (− η) ϕ2 (η) + H+ (η) C2] − F2 (η) =

= q2 sign (η) (a0 + C2 + a1d − 2U) t1 (− η) + a1 (2 − q2) t2 (− η) ,

and, based on (21) and (22), we obtain the following expression for the continuous-spectrum coefficient:

2ηa (η) sinh 
d
η

 = γ (η) 



[− (q1C1 + q2C2) − a0 (q1 + q2) +

+ (a1d − 2U) (q1 − q2)] sign (η) t1 (− η) + a1 (q1 − q2) t2 (− η)



 .

Substituting the coefficients of (14) and (15) into this relation, we find the explicit for the continuous-spectrum coef-
ficient

ηa (η) sinh 
d

η
 = 

Uq1q2 (q1 − q2)
Q (q1, q2)

 γ (η) 



sign (η) t1 (− η) + 

2

√π
 t2 (− η)




 . (23)

Below, we will use the value of the integral of expression (23) over the entire real axis:

1

√π
 ∫ 
−∞

∞

ηa (η) sinh 
d

η
 dη = 2Uγ1

0
 
q1q2 (q1 − q2)

Q (q1, q2)
 , (24)

 γ1
0
 = 

1

√π
 ∫ 
−∞

∞

γ (η) t1 (− η) dη = 0.141047 .

Thus, the boundary-value problem (3) and (7) has completely been solved. In its solution prescribed by equal-
ity (5), the function ψc is determined by relation (9); the coefficients a0, a1, C1, and C2 are found from equalities (15)
and (16), whereas the function a(η) is found from (23).

Macroparameters of the Gas in the Channel (Mass and Heat Fluxes, Friction Force, and Mass Velocity).
We denote the dimensional and dimensionless quantities by unprimed and primed symbols. The mass-flux density will
be expressed by the function ψ:

jM (x ′) = ∫ mvz fd
3
v = ∫ mf0vzhd

3
v = 

ρ
2 √πβ

 ∫ 
−∞

∞

exp (− µ2) ψ (x ′, µ) dµ .

Substituting (5) into this equality and using the determination of the gas-mass flux in the direction of the z axis, we
write

JM = 
1

ν √π
 ∫ 
−∞

∞

jM (x ′) dx ′ = 
ρ
νβ

 






a0d ′ + 

1
√π

 ∫ 
−∞

∞

ηa (η) sinh 
d ′

η
 dη







 .

Replacing here a0 according to (14) and using the value (24) of the integral instead of it, we find that the flux of the
gas mass per unit width of the channel is
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JM = 
2ρU ′ (q1 − q2)
νβQ (q1, q2)

 [(γ1
0
 − α0) q1q2 − d ′] . (25)

We reduce formula (25) to its dimensional form, setting U ′ = √β  U and d ′ = ν√β  d. Taking into account that
the dynamic viscosity for the BGK model is η = ρ/2νβ and selecting the mean free path of molecules l = η√π  β ⁄ ρ
according to [5], we find that d ′ = √π  d/2l = √π /(4Kn). Consequently, the mass flux in dimensional form (see Fig.
1a) is

JM = 4η √β  U 
q1 − q2

Q (q1, q2)
 







γ1

0
 − α0 

√π
4Kn




 q1q2 − 

√π
4Kn




 . (26)

Here and in what follows we have

Q (q1, q2) = 


1
2Kn

 − 1 + 4α0



 q1q2 + (1 − α0q1q2) (q1 + q2) .

We compute the viscous-friction force in the direction of the z axis per unit area of the surface:

F = ∫ mvxvz fd
3
v = 

ρ
2β √π

 ∫ 
−∞

∞

exp (− µ2) µψ (x ′, µ) dµ .

Substituting (5) into this relation, we find the expression for the friction force in dimensional form (see Fig. 1b):

F = − 
ρa1

4β
 = − nkT 

a1

2
 = − 2 √β

π
 pUF0 (q1, q2) . (27)

Here

F0 (q1, q2) = 
q1q2

Q (q1, q2)

is the dimensionless friction factor (see Fig. 2, where a comparison to the existing data [8] is made).
The density of the heat flux in the direction of the z axis is determined by the equality

jQ (x ′) = ∫ m2  (vz − uz (x
 ′)) (v − u (x ′))2 fd

3
v .

Fig. 1. Mass flux (a) and viscous-friction force (b) vs. q2 for different values
of the quantity q = q1; Kn = 1.
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After the linearization of this expression and passage to the dimensionless molecular velocity, we obtain

JQ = 
p
√π

  ∫ 
−d ′

d ′

 dx ′ ∫ exp (− C
2) Cz 




C

2
 − 

5
2



 h (x ′, C) d3

C .

Taking into account that h = Czψ(x, µ), we write

JQ = 
p

2 √πβ
  ∫ 
−d ′

d ′

 dx ′ ∫ 
−∞

∞

exp (− µ2) 

µ2

 − 
1
2



 ψ (x ′, µ) dµ = − 

p
2 √πβ

 ∫ 
−∞

∞

η sinh 
d ′

η
 a (η) dη .

Using (24) and passing to dimensionless quantities, we find the expression for the heat flux (see Fig. 3):

JQ = − γ1
0
pU 

q1q2 (q1 − q2)
Q (q1, q2)

 . (28)

The mass velocity of the gas is determined by the second equality from (1), according to which

Uz (x
 ′) = 

1
2 √π

 ∫ 
−∞

∞

exp (− µ2) ψ (x ′, µ) dµ .

After the substitution of the function ψ(x ′, µ) into this expression, we obtain that the dimensionless mass velocity is
equal to

Uz (x
 ′) = 

1
2

 (a0 + a1x ′) + 
1

2 √π
 ∫ 
−∞

∞

exp 



− 

x ′

η




 a (η) dη . (29)

In equality (29), the coefficients a0 and a1 are determined by relations (14), and the function a(η) is determined by
equality (23). We represent (29) in explicit form (see Fig. 4):

Fig. 2. Friction factor vs. channel width for q1 = q2 = 1: 1) data from the pre-
sent work ; 2) [9].

Fig. 3. Heat flux vs. q2 for Kn = 1 and different values of q1.
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Uz (x) = 
U

Q (q1, q2)
 




q1q2
Kn

 x + q1q2 (q1 − q2) [I (x) − α0] − (q1 − q2)



 ,

where

I (x) = 
1

2 √π
 ∫ 
−∞

∞

exp 



− 
√π  x

2ηKn




 

b (η) dη
sinh (√π  ⁄ 4ηKn)

 ;   b (η) = 
γ (η)
η

 

t1 (− η) sign (η) + 

2
√π

 t2 (− η)

 .

We note that if we set α0 = 0 in the formulas for the macroparameters (26)–(29), the formulas obtained co-
incide with the corresponding expressions derived in [6] for the case of nearly mirror boundary conditions.

Let us pass to an investigation of the limiting regimes of flow. We consider the case of a wide channel where
the Knudsen number is Kn = l/2d << 1. There can be two regimes of channel flow of the gas. The first of them cor-
responds to Kn << q, q = max (q1, q2) or, which is the same, qd/l >> 1. It follows from the relations for the
macroparameters (26)–(28) that

JM = − 2 √πβ  ηU 
q1 − q2

q1q2
 (1 + α0q1q2) ,   F = − η 

U

d
 ,   JQ = − 

√π  γ1
0η (q1 − q2)
2 √β  d

 . (30)

It is noteworthy that formulas (30) coincide with the corresponding formulas ([6]) derived in the Couette
problem with nearly mirror boundary conditions, whereas the relation for the friction force is adequate to the classical
formula from [13].

In the second regime of flow of the gas, where q << Kn << 1, it follows from the relations for the macropara-
meters that

JM = − 2ρdU 
q1 − q2

q1 + q2
 ,   F = − 

2p √π ⁄ β  Uq1q2

q1 + q2
 ,   JQ = − γ1

0
pU 

q1 − q2

q1 + q2
 q1q2 . (31)

Expression (31) coincide with the corresponding formulas derived for the case of nearly mirror boundary conditions.
Thus, there is a new regime of flow of the gas, where the expression for the macroparameters is different

from the classical ones.
Conclusions. We have obtained the solution of the Couette problem in a wide range of Knudsen numbers for

arbitrary mirror-diffuse boundary conditions in the case of different tangential momentum accommodation coefficients
on channel walls. The distribution function of gas molecules has been constructed in explicit form. It has been shown

Fig. 4. Mass-velocity profile for q1 = 0.75, q2 = 0.25, Kn = 1, and 2d = 1.
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that the mass and heat fluxes are in proportion to the difference of the accommodation coefficients. The new regime
of flow of the gas, which is different from the classical one, has been singled out.

This work was carried out with support from the Russian Foundation for Basic Research (project code 03-01-
00281).

NOTATION

C = √m ⁄ 2kTv, dimensionless velocity of molecules; 2d, channel width; f0, absolute Maxwellian; F, viscous-
friction force; h, linear correction to the absolute Maxwellian; H+(x), Heaviside function, H+(x) = 1, x > 1, and H+(x),
x < 0; JM, mass flux; JQ, heat flux; jM, mass-flux density; jQ, heat-flux density; k, Boltzmann constant; Kn, Knudsen
number; l, mean free path of molecules; m, mass of a gas molecule; n, concentration of gas molecules; n1 and n2, unit
vectors of the normal to the walls in the direction into the channel; Px−1, principal value of the integral of x−1; p, gas
pressure; q1 and q2, tangential momentum accommodation coefficients of molecules on the lower and upper plates; T,
gas temperature; Uz(x) = √β  uz(x), dimensionless mass velocity in the direction of the z axis; uz(x), dimensional mass
velocity; %U, velocities of motion of the plates bounding the channel; v, molecular velocity; δ(x), Dirac delta function;
η, dynamic viscosity; λ(z), dispersion function. Subscripts: c, continuous; M, mass; Q, heat; z and x, projections in the
direction of the z and x axes.
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